DECT Single-Chip Transceiver

Description

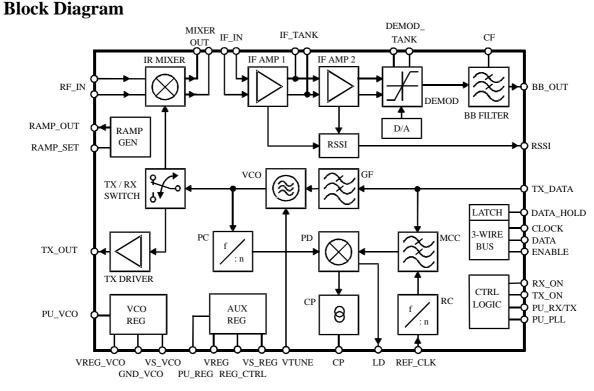
The T2801 is an RF IC for low-power DECT applications. The HP-VFQFP-N48–packaged IC is a complete transceiver including image rejection mixer, IF amplifier, FM demodulator, baseband filter, RSSI, TX preamplifier, power-ramping generator for power amplifiers, integrated synthesizer, fully integrated VCO, TX filter and modulation compensation circuit for advanced closedloop modulation concept. No mechanical tuning is necessary in production.

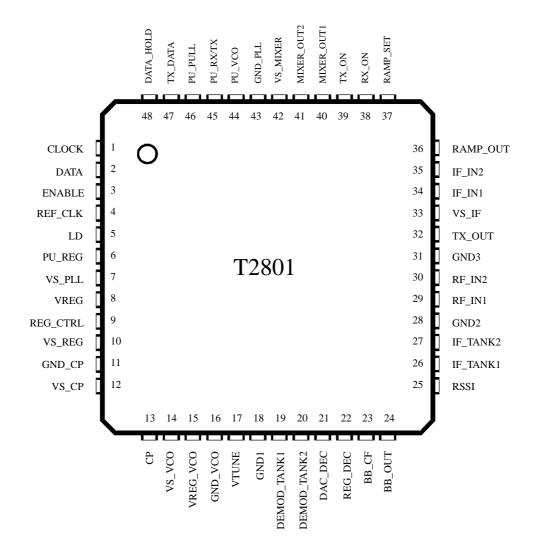
Features

- Supply-voltage range 3 V to 4.6 V (unregulated)
- Auxiliary-voltage regulator on-chip
- Low current consumption
- Few low cost external components
- No mechanical tuning required

• Non-blindslot and blindslot operation

- Unlimited multislot operation with advanced closedloop modulation (13.824 MHz/ 27.648 MHz and 10.368 MHz/ 20.736 MHz)
- TX preamplifier with 0 dBm output power at 1.9 GHz and ramp-signal generator for SiGe power amplifier




Figure 1. Block diagram

Ordering Information

Extended Type Number	Package	Remarks
T2801-PLT	HP-VFQFP-N48	Tray
T2801-PLQ	HP-VFQFP-N48	Taped and reeled

Pin Description

Figure	2.	Pin	ning
1 iguic	2.	1 1111	ms

Pin	Symbol	Function	Configuration
1	CLOCK	3-wire-bus: Clock input	
2	DATA	3-wire-bus: Data input	
3	ENABLE	3-wire-bus: Enable input	

Preliminary Information

Pin	Symbol	Function	Configuration
4	REF_CLK	Reference-frequency input	
5	LD	Lock-detect output	
6	PU_REG	Aux. voltage regulator power-up input	PU_REG 6 0 25k 25k
7	VS_PLL	PLL supply voltage	VS_REG VS_PLL 10 \lor VS_CP 12 \lor VS_VCO 14 \lor VS_VCO 14 \lor VS_JF VS_MIXER 42 \lor GND1 11 \lor GND2 16 \lor GND3 31 \circ VS_MIXER GND3 \lor GND2 GND_PLL 31 \circ VS_MIXER GND_VCO 16 \lor VS_MIXER GND3 \lor CO CO CO CO CO CO CO CO CO CO

Pin	Symbol	Function	Configuration
8	VREG	Aux. voltage-regulator output	
9	REG_CTRL	Aux. voltage-regulator control output	
10	VS_REG	Aux. voltage-regulator supply voltage	
11	GND_CP	Charge-pump ground	
12	VS_CP	Charge-pump supply voltage	
13	СР	Charge-pump output	GND_CP
14	VS_VCO	VCO voltage-regulator supply voltage	vs_vco 14
15	VREG_VCO	VCO voltage-regulator control output	vreg_vco +
16	GND_VCO	VCO ground	
17	VTUNE	VCO tuning voltage input	

T2801

Pin	Symbol	Function	Configuration
18	GND1	Ground	VS_REG VS_PLL 10 VS_CP 12 VS_VCO 14 VS_VCO
			GND_CP 110 GND_VCO 160 GND3 GND3 GND3 GND3 GND3 GND4 GND4 GND4 GND2 GND2 GND2 GND2 GND2 GND2 GND2 GND2 GND2 GND2 GND2 GND2 GND2 GND2 GND2 GND2 GND2 GND4 GND2 GND4
19	DEMOD_TANK1	Demodulator tank circuit	
20	DEMOD_TANK2	Demodulator tank circuit	
21	DAC_DEC	Decoupling PIN for VCO_DAC	$\begin{array}{c} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $
22	REG_DEC	Decoupling PIN for REG	REG_DEC C 21 Z

Pin	Symbol	Function	Configuration
23	BB_CF	Baseband filter corner-frequency control input	
24	BB_OUT	Baseband filter output	
25	RSSI	Received signal-strength indicator output	VS RSSI 25 15k
26	IF_TANK1	IF tank circuit	
27	IF_TANK2	IF tank circuit	

Preliminary Information

Pin	Symbol	Function	Configuration
28	GND2	Ground	VS_REG VS_PLL 10
			$\begin{array}{c} 42 \circ \\ \hline GND_CP \\ 11 \circ \\ \hline \\ GND_VCO \\ 16 \circ \\ \hline \\ GND3 \\ 31 \circ \\ \hline \\$
29	RF_IN1	Differential RF input of image reject mixer	
30	RF_IN2	Differential RF input of image reject mixer	
31	GND3	Ground	VS_REG VS_PLL 10 \vee VS_CP 12 \vee VS_VCO 14 \vee VS_VCO 14 \vee VS_IF VS_MIXER 42 \vee GND1 10 \vee GND1 10 \vee GND2 16 \vee GND3 10 \vee GND3 10 \vee GND2 10 \vee GND3 10 \vee GND2 10 \vee GND3 10 \vee GND2 10 \vee GND2 10 \vee GND3 10 \vee GND3

Pin	Symbol	Function	Configuration
32	TX_OUT	TX driver amplifier output for PA	
33	VS_IF	IF amplifier supply voltage	VS_REG VS_PLL 10 \lor VS_PLL 10 \lor VS_CP 12 \lor VS_VCO 14 \lor VS_VCO 14 \lor VS_JF 33 \lor VS_MIXER 42 \lor GND1 10 \lor VS_MIXER 42 \lor GND2 16 \lor VS_MIXER GND3 \lor GND2 16 \lor VS_MIXER GND3 \lor VS_MIXER GND PLL 31 \circ VS_MIXER GND PLL 31 \circ VS_MIXER GND PLL 31 \circ VS_MIXER GND PLL 31 \circ VS_MIXER COMPARENT
34	IF_IN1	Differential IF input of IF amplifier	
35	IF_IN2	Differential IF input of IF amplifier	

Preliminary Information

Pin	Symbol	Function	Configuration
36	RAMP_OUT	Ramp-generator output for PA power ramping	VS B B B C C C C C C C C C C C C C C C C
37	RAMP_SET	Slew-rate setting of ramping signal	VS T RAMP_SET
38	RX_ON	RX control input	
39	TX_ON	TX control input	38, 39 5k 5k 5k 5k 5k 5k 5k 5k 5k 5k
40	MIXER_OUT1	Differential mixer output for SAW filter	
41	MIXER_OUT2	Differential mixer output for SAW filter	

Pin	Symbol	Function	Configuration
42	VS_MIXER	Mixer supply voltage	VS_REG VS_PLL 10 VS_CP 12 VS_VCO 14 VS_IF 33 VS_VCO
43	GND_PLL	PLL ground	$\begin{array}{c} VS_MDXER \\ 42 \\ GND_CP \\ 11 \\ GND_VCO \\ 16 \\ GND_3 \\ 31 \\ H \\ $
44	PU_VCO	VCO power-up input	PU_VCO PU_RX/TX 44, 45 25k 25k
45	PU_RX/TX	RX/TX power-up input	
46	PU_PLL	PLL power-up input	20k $10k$ $10k$ $10k$ $10k$ $25k$

Pin	Symbol	Function	Configuration
47	TX_DATA	TX data input of Gaussian filter and modulation-compensation circuit	TX_DATA 47 5k 5k 5k 1 1 1 1 1 1 1 1 1 1 1 1 1
48	DATA_HOLD	Data-hold input to keep the latch information in power-down mode	DATA_HOLD 48 O T T T T T T T T T T T T T

Functional Description

Receiver

The RF-input signal at RF_IN is fed to an image rejection mixer IR_MIXER with its differential outputs MIXER_OUT1 and MIXER_OUT2 driving an IF-SAW filter at 110 MHz or 111 MHz. The IF amplifiers IF_AMP1 and IF_AMP2 with an external IF_TANK and an integrated RSSI function feed the signal to the demodulator DEMOD working at $f = f_{IF}/2$ (55 MHz/ 55.5 MHz) and finally to an integrated baseband filter BB. For demodulator tuning in production an integrated 5-bit digital-to-analog (D/A) converter is used to control the on-chip varicap diode.

Transmitter

The transmit data at TX_DATA is filtered by an integrated Gaussian filter GF and fed to the fully integrated VCO operating at twice the output frequency. After modulation the signal is frequency-divided by 2 and fed via a TX/RX SWITCH to the TX_DRIVER. This bus-controlled driver amplifier supplies +3 dBm output power at TX_OUT. A ramp-signal generator RAMP_GEN, providing ramp signals at RAMP_OUT for an external power amplifier, is also integrated. The slope of the ramp signal is controlled by a capacitor at RAMP_SET.

Synthesizer

The IR_MIXER, the TX_DRIVER and the programmable counter PC are driven by the fully integrated VCO (including on-chip inductors and varactors). An 3-bit digital-to-analog converter is used to pretune the frequency. The output signal is frequency-divided to supply the desired frequency to the TX_DRIVER, 0/90 degree phase shifter for the IR_MIXER and to be used by the PC for the phase detector PD ($f_{PD} = 3.456$ MHz). Unlimited multislot operation is possible by using the integrated advanced closed-loop modulation concept based on the modulation compensation circuit MCC.

Power Supply

For minimum interference and maximum signal isolation an integrated bandgap-stabilized voltage regulator for use with an external low-cost PNP transistor is implemented. Multiple power-down and current saving modes are provided.

PLL Principle

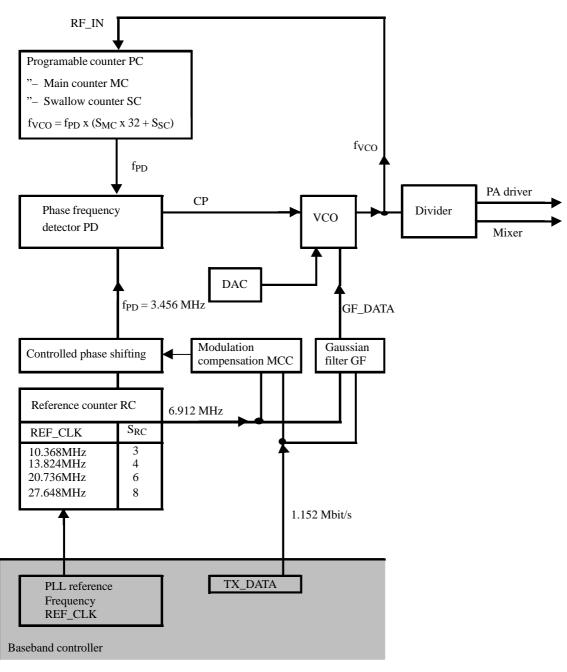


Figure 3.

The following table shows the LO frequencies for RX and TX for the DECT band plus additional channels for an optional DECT band extension. Intermediate frequencies of 110.592 and 112.32 MHz are supported. Table 1. LO frequencies

Mode	f _{IF} /MHz	Channel	f _{ANT} /MHz	f _{VCO} /MHz	f _{VCO} /2/MHz	S _{MC}	S _{SC}
TX		C9	1881.792	3763.584	1881.792	34	1
		C8	1883.520	3767.040	1883.520	34	2
		C1	1895.616	3791.232	1895.616	34	9
		CO	1897.344	3794.688	1897.344	34	10
		C10	1899.072	3798.144	1899.072	34	11
		C11	1900.800	3801.600	1900.800	34	12
		C29	1931.904	3863.808	1931.904	34	30
		C30	1933.632	3867.264	1933.632	34	31
RX	110.952	C9	1881.792	3542.400	1771.200	32	1
		C8	1883.520	3545.856	1772.928	32	2
		C1	1895.616	3570.048	1785.024	32	9
		CO	1897.344	3573.504	1786.752	32	10
		C10	1899.072	3576.960	1788.480	32	11
		C11	1900.800	3580.416	1790.208	32	12
		C29	1931.904	3642.624	1821.312	32	30
		C30	1933.632	3646.080	1823.040	32	31
RX	112.320	C9	1881.792	3538.944	1769.472	32	1
		C8	1883.520	3542.400	1771.200	32	2
		C1	1895.616	3566.592	1783.296	32	9
		C0	1897.344	3570.048	1785.024	32	10
		C10	1899.072	3573,504	1786.752	32	11
		C11	1900.800	3576.960	1788.480	32	12
		C29	1931.904	3639.168	1819.584	32	30
		C30	1933.632	3642.624	1821.312	32	31

Table 2. Limits

Mode	f _{IF} /MHz		f _{ANT} /MHz	f _{VCO} /MHz	f _{VCO} /2/MHz	S _{MC}	S _{SC}
TX		fmin	1769.472	3538.944	1769.472	32	0
RX	110.592		1880.064	3538.944	1769.472	32	0
	112.320		1826.496	3538.944	1769.472	32	0
TX		fmax	1988.928	3977.856	1988.928	35	31
RX	110.592		2099.520	3977.856	1988.928	35	31
	112.320		2101.248	3977.856	1988.928	35	31

Formula

 $\begin{aligned} f_{ANT \ Ci} &- f_{ANT \ Ci-1} = 1.728 \ MHz \\ for \ TX: \ f_{VCO} &= 2 \ x \ f_{ANT} \\ for \ RX: \ f_{VCO} &= 2 \ x \ (f_{ANT} - f_{IF}) \end{aligned}$

T2801

Control Signals

LD output, which is active after PLL is locked and test-mode output (according to programmed test mode) PU_REG hardware power up —> standby of regulator

- PU_VCO hardware power up -> standby of voltage controlled oscillator
- PU_RX/TX hardware power up -> standby of RX/ TX part

PU_PLL hardware power up —> standby of synthesizer

Table 3.

Logic	Standby	Standby Hold Register	TX Mode	RX Mode	RSSI Only
DATA_HOLD	0	1	X	Х	X
PU_REG	0	0	1	1	1
PU_VCO	X	X	1	1	1
PU_RX/TX	X	X	1	1	1
PU_PLL	X	X	1	1	1
RX_ON	X	X	0	1	1
TX_ON	X	X	1	0	1
BB filter	OFF	OFF	OFF	ON	OFF
Demodulator	OFF	OFF	OFF	ON	OFF
IF amplifiers and RSSI	OFF	OFF	OFF	ON	ON
IR mixer	OFF	OFF	OFF	ON	ON
RX switch	OFF	OFF	ON	ON	ON
TX switch	OFF	OFF	ON	OFF	OFF
TX driver	OFF	OFF	ON	OFF	OFF
Ramp generator	OFF	OFF	ON	OFF	OFF
Programmable counter	OFF	OFF	ON	ON	ON
Voltage-controlled oscillator	OFF	OFF	ON	ON	ON
Gaussian filter	OFF	OFF	ON	OFF	OFF
Phase detector / charge pump	OFF	OFF	ON	ON	ON
Modulation compensation circuit	OFF	OFF	ON	OFF	OFF
Reference counter	OFF	OFF	ON	ON	ON
Current consumption / mA @ $V_S = 3.2 V$	< 0.01	<0.1	54	85	80

Serial Programming Bus

Reference and programmable counters can be programmed by the 3-wire bus (CLOCK, DATA and ENABLE). Besides this information additional control bits as phase detector polarity and scaling of charge-pump currents as well as internal currents for Gaussian lowpass filter and modulation compensation circuit can be transferred.

After setting enable signal to low condition, on the rising edge of the clock signal, the data status is transferred bit by bit into the shift register, starting with the MSB-bit. After enable returning to high condition the programmed information is loaded into the addressed latches, according to the addressbit condition (last bit). Additional leading bits are ignored and there is no check made how many pulses have arrived during enable-low condition. The bus then returns to a low current standby mode until the ENABLE signal changes to low again.

To keep the information in the registers of the PLL during standby DATA_HOLD must be set to high condition.

0

Bus Protocol Formats

MSB																							LSB
	Data bits							Address bit															
D22	D21	D20	D19	D18	D17	D16	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	A0
R	С			SC			М	C		PS		GF	MCC		GFCS		V	CODA	C		CPCS		1
1	0	0	1	1	1	1	0	0	1	1	1	0	0	1	0	0	1	0	0	1	0	0	1
X Standard bit setting: Word 1 E10 E9 E8 E7 E6 E5 E4 E3 E2 E1 E0 A0							A0																
													DEN	NODD	AC		1	MCCS	5		TEST		0

0

0

Word 2

PLL Settings

RC (Reference Divider)							
D22 D21 S _{RC}							
0	0	3					
0	1	4					
1	0	6					
1	1	8					

Phase Settings

0 0

Phase of GF-Output (Internal Connection)						
D13	GF-DATA					
0	Source					
1	Sink					

0

0 0 0 0 0 0

Phase of MCC-Output (Internal Connection)					
D12	MCC-Data				
0	Inverted				
1	Normal				

MC (Main Divider)							
D15 D14 S _M							
0	0	32					
0	1	33					
1	0	34					
1	1	35					

Phase of CP (Charge Pump)								
D11	$f_R > f_P$	$f_R < f_P$	$f_R = f_P$					
0	I _{Sink}	I _{Source}	High imp.					
1	I _{Source}	I _{Sink}	High imp.					

	SC (Swallow Counter)								
D20	D19	D18	D17	D16	S _{SC}				
0	0	0	0	0	0				
0	0	0	0	1	1				
0	0	0	1	0	2				
1	1	1	0	1	29				
1	1	1	1	0	30				
1	1	1	1	1	31				

Current Savings Power up/down Settings

D10	GF (Gaussian Filter)
0	OFF
1	ON

D9	MCC (Modulation Compensation Circuit)
0	OFF
1	ON

Current Gain Settings

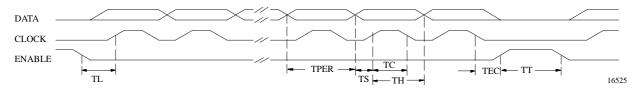
GFCS (Gaussian Filte	ered Current S	ettings)
D8	D7	D6	GFCS
0	0	0	60%
0	0	1	70%
0	1	0	80%
0	1	1	90%
1	0	0	100%
1	0	1	110%
1	1	0	120%
1	1	1	130%

Pretune DAC Voltage Settings

Pretune	DAC Voltage	(Internal Con	nection)
D5	D4	f _{VCO} /%	
0	0	0	-5
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	5

CPCS (Charge-Pump Current Settings) (Internal Connection)								
D2	D1	D1 D0 CPCS						
0	0	0	60%					
0	0	1	70%					
0	1	0	80%					
0	1	1	90%					
1	0	0	100%					
1	0	1	110%					
1	1	0	120%					
1	1	1	130%					

MCCS (Modulation Compensation Current Settings) (Internal Connection)							
E5	5 E4 E3 MCCS						
0	0	0	60%				
0	0	1	70%				
0	1	0	80%				
0	1	1	90%				
1	0	0	100%				
1	0	1	110%				
1	1	0	120%				
1	1	1	130%				


Test Mode Settings

		Test	Outp	ut Pin (Lock Detect)	
D11	E2	E1	E0	Signal at lock detect output	CP mode
X	0	0	0	Lock detect	Active
0	0	0	1	RC out	Active
1	0	1	0	PC out	Active
X	0	1	1	RC out divided by 2048 (MCCTEST)	Active
X	1	0	0	CP tristate only	High imp.
0	1	0	1	RC out	High imp.
1	1	1	0	PC out	High imp.
X	1	1	1	RC out divided by 2 (GFTEST)	High imp.

DEMOD DAC Voltage Settings (**DEMODDAC**)

De	mod DA	C Voltag	ge (Interr	nal Conn	ection)
E10	E9	E8	E7	E6	f _{IFcenter} %
0	0	0	0	0	-6.0
0	0	0	0	1	
0	0	0	1	0	
1	1	1	0	1	
1	1	1	1	0	
1	1	1	1	1	6.0

3-Wire Bus Protocol Timing Diagram

Figure 4.

Description	Symbol	Min. Value	Unit
Clock period	TPER	125	ns
Set time data to clock	TS	60	ns
Hold time data to clock	TH	60	ns
Clock pulse width	TC	125	ns
Set time enable to clock	TL	200	ns
Hold time enable to data	TEC	0	ns
Time between two protocols	TT	250	ns

Absolute Maximum Ratings

All voltages are referred to GND

Pa	Parameter		Min.	Max.	Unit
Supply voltage regulator	Pin 10	V _{S_REG}	3.2	4.7	V
Supply voltage	Pins 7, 12, 14, 33 and 42	Vs	3.0	4.7	V
Logic input voltage	Pins 1, 2, 3, 38, 39, 44, 45, 46, 47 and 48	V _{IN}	- 0.3	Vs	V
Junction temperature		T _{jmax}		150	°C
Storage temperature		T _{stg}	-40	150	°C

Thermal Resistance

Parameters	Symbol	Value	Unit
Junction ambient	R _{thJA}	t.b.d.	K/W

Operating Range

Parameter		Symbol	Min.	Тур.	Max.	Unit
Supply voltage regulator Pins 10		Vs	3.2	3.6	4.6	V
Supply voltage	Pins 7, 12, 14, 33 and 42	Vs	3.0	3.0	4.6	V
Ambient temperature		T _{amb}	-25		+85	°C

Electrical Characteristics

Test conditions	(unless otherwise	specified): V _S	$_{\rm REG} = 3.2 \text{ V}, \text{ T}_{\rm amb}$	$= 25^{\circ}C$
-----------------	-------------------	----------------------------	---	-----------------

Test conditions (unless other wise	specificuly. $v_{S_{REG}} = 3.2 v$, r_{an}				1	
Parameters	Test Conditions / Pins	Symbol	Min.	Тур.	Max.	Unit
Receiver						
IR mixer	Pins 29, 30, 40 and 41	1		1	1	1
Input impedance	Pins 29 and 30	Zin		50		Ω
Input matching	Pins 29 and 30	VSWR _{in}		<2:1		
Image rejection ratio	Pins 40 and 41	IRR		20		dB
DSB noise figure	Pins 40 and 41	NFDSB= NFSSB		10		dB
Conversion gain	$R_{load} = 200 \ \Omega$	G _{conv}		12		dB
Output interception point	Pins 40 and 41	OIP3		10		dBm
IF amplifier	Pins 26, 27, 34 and 35					
Input impedance	Pins 34 and 35	Zin	200		400	Ω
Lower cut-off frequency		fl _{3dB}		90		MHz
Upper cut-off frequency		fu _{3dB}		130		MHz
Power gain		Gp		85		dB
Bandwidth of external tank cir- cuit	Pins 26 and 27	BW3dB		10		MHz
Noise figure		NF		9		dB
RSSI	Pins 25, 34 and 35	1				
RSSI sensitivity	at IF_IN1, IF_IN2 Pins 34 and 35	P _{min}		20		dBµV
RSSI compression	at IF_IN1, IF_IN2 Pins 34 and 35	P _{max}		100		dBµV
RSSI dynamic range		DR		80		dB
RSSI resolution	Slope of the RSSI has to be steady	Acc		±2		dB
RSSI rise time	$P_{in} = 30$ to 100 dBµV, Pin 25	t _r		1		μs
RSSI fall time	$P_{in} = 100 \text{ to } 30 \text{ dB}\mu\text{V}$, Pin 25	t _f		1		μs
Quiescent output current		I _{out}		30		μA
Maximum output current	@ $P_{in} = 100 \text{ dB}\mu\text{V}$ at IF_IN1, IF_IN2 Pin 25	I _{out}		150		μΑ
FM demodulator, BB-Filter	Pins 19, 20, 23 and 24					
Co-channel rejection ratio	@ P _{in} = -75 dBm at IR-mixer input	CCRR		10		dB
Sensitivity	Quality factor of external tank circuit approx. 20, $f_{res} = F_{IF}/2$, Pin 24	S		0.5		V/MHz
Amplitude of recovered signal	Nominal deviation of signal ± 288 kHz, Pin 24	A		288		mVss
Corner frequency	Pin 23: C = 68 pF	f _c		680		kHz
Output voltage DC range	Pin 24	FM _{outDC}	1		Vs-1	V
Output impedance	Pin 21	Zout		1.5		kΩ
AM rejection ratio	Pin 21	AMRR		t.b.d.		dB
DAC for FM demodulator (int	ternally connected) (5-bit pr	ogramming	g see bus	protocol	E5 to E1))
DAC range		T _{DAC}		± 6		%

Electrical Characteristics (continued)

Parameters	Test Conditions / Pins	Symbol	Min.	Тур.	Max.	Unit
Transmitter/ PLL						
VCO						
Frequency range		f _{vco}	1750		2000	MHz
Tuning gain	Pin 17	G _{tune}		40		MHz/V
Frequency control	Pin 17	V _{tune}	0.4		2.8	V
voltage range						
DAC for VCO pretune (i	internally connected) (3-bit b	ous programmin	ng se bus p	rotocol D3	8 to D5)	
DAC tuning range		$\Delta f_{vco,DAC}$		± 5		%
PLL	Pin 4					
Scaling factor prescaler		S _{PSC}	32 / 33			
Scaling factor main counter		S _{MC}	32 / 33 / 34 / 35			
Scaling factor swallow counter		S _{SC}	0		31	
External reference input frequency	AC coupled sinewave Pin 4	f _{REF_CLK}		13.824 27.648		MHz MHz
External reference input voltage	AC coupled sinewave Pin 4	V _{REF_CLK}	50		250	mV _{RMS}
Scaling factor reference counter		S _{RC}	3 / 4 / 6 / 8			
Charge pump (active wh	en RX, TX) Pin 13					
Output current	$V_{I_CP_SW} = '0',$ $V_{CP} = V_{VS_CP} / 2$	I _{CP_1}		± 1		mA
Current scaling factor	$I_{CP} = CPCS * I_{CP_TYP}$ (see bus protocol D0 D2)	CPCS	60		130	%
Leakage current		IL		± 100		pA
Gaussian transmit filter	(Gaussian shape B*T = 0.5)		-			
Tx data filter clock	12 taps in filter	f TXFCLK		13.824		MHz
Frequency deviation	Polarity (see bus protocol D13)	GF _{FM_TYP}		±288		kHz
Frequency deviation scaling	$GF_{FM} = GF_{FM_TYP} *$ GFCS (see bus protocol $D6 \dots D8$)	GFCS	60		130	%
Modulation compensatio	n circuit					
Oversampling		OVS		6		
Digital sum variation		DSV			85	
Current scaling factor	(see bus protocol E3 E5)	MCCS	60		130	%

Electrical Characteristics (continued)

Parameters	Test Conditions / Pins	Symbol	Min.	Тур.	Max.	Unit
VCO switch and TX driv	er Pin 32					
Power gain	@ $P_{in} = -40 \text{ dBm}$	Gp		30		dB
Output impedance	Pin 32	Zout		100		Ω
Maximum output power	Pin 32	P _{max}		3		dBm
Gain compression	@ TX_RF_OUT, Pin 32	P _{1dB}		1		dBm
Output interception point	Pin 32	OIP3		10		dBm
Ramp generator	Pins 36 and 3	57				
Minimum output voltage	According to RAMP_SET input	V _{min}		0.2		V
Maximum output voltage	According to RAMP_SET input	V _{max}		1.95		V
Rise time	$C_{ramp} = 270 \text{ pF}$ at Pin 37	t _r		5		μs
Fall time	$C_{ramp} = 270 \text{ pF}$ at Pin 37	t _f		5		μs
Lock detect and test mode	e output Pin 5					
Lock detect output, test mode output	locked = '1' unlocked = '0' test modes (see bus proto- col E0 E2)	LD				
Leakage current	$V_{OH} = 4.6 V$	IL			5	μA
Saturation voltage	$I_{OL} = 0.5 \text{ mA}$	V _{SL}			0.4	V
Auxiliary regulator	Pins 8, 9 and					
Output voltage	$V_{SREG} = 3 V$ Pin 8	V _{REG}	2.9	3.0	3.1	V
Supply voltage rejection	$\begin{split} V_{Pin10} &= V_{DC} + 0.1 \ V_{pp} \\ f_{Pin10} &= 0.1 \ to \ 10 \ kHz \\ C_{Pin8} &= 100 \ nF \end{split}$	SVR		tbd		dB
VCO regulator	Pins 14, 15 a	nd 12				
Output voltage	$V_{SVCO} = 3 V$ Pin 15	V _{REG_VCO}	2.6	2.7	2.8	V
3-wire bus						
Clock		f _{Clock}		1.152	6.912	MHz

Electrical Characteristics (continued)

Parameters	Test Conditions / Pins	Symbol	Min.	Тур.	Max.	Unit
Logic input levels						
(CLOCK, DATA, ENAB	LE, RX_ON, TX_ON, PU_V		DATA_H	IOLD)		
	Pins 1, 2, 3, 38, 39, 44, 4	7 and 48		T	1	,
High input level	= '1'	V _{iH}	1.5			V
Low input level	= '0'	V _{iL}			0.5	V
High input current	= '1'	I _{iH}	-5		5	μA
Low input current	= '0'	I _{iL}	-5		5	μA
Standby control	Pins 6, 45 and 46					
Power up						
$PU_REG = '1'$	Pin 6	V _{PU_REG}				
$PU_RX/TX = '1'$	Pin 45	V _{PU_RX/TX}	2.0			V
$PU_PLL = '1'$	Pin 46	V _{PU_PLL}				
High input level						
Standby						
$PU_REG = '0'$	Pin 6	V _{PU_REG,OFF}			0.7	v
$PU_RX/TX = '0'$	Pin 45	V _{PU_RX/TX,OFF}				
$PU_PLL = '0'$	Pin 46	V _{PU_PLL,OFF}				
Low input level						
Power up						
$PU_REG = '1'$	$V_{PU} = 3 V$ Pin 6	I _{PU_REG}	20	30	40	μA
$PU_RX/TX = '1'$	$V_{PU} = 5.5 V \qquad Pin \ 45$	I _{PU_RX/TX}	60	80	100	μA
PU PLL = '1'	$V_{PU} = 3 V$ Pin 46	T	100	125	150	
High input current	$V_{PU} = 3 V $ Pin 46 $V_{PU} = 5.5 V$	I _{PU_PLL}	200	300	400	μΑ μΑ
Standby	v pu = 3.3 v		200	500	400	μΑ
$PU_xxxx = '0'$	$V_{PU} = 0 V$ Pin 6,	Inviore			0.1	
Low input current	$V_{PU} = 0.5 V$ Pins 45, 46	I _{PU,OFF}			1	μΑ μΑ
Settling time	$v p_0 = 0.5 v - 1 m s + 5, + 0$				1	μΛ
$V_{S} = 0$	Switched from	t		< 10		110
\rightarrow active operation	$V_S = 0$ to $V_S = 3V$	t _{soa}		< 10		μs
Settling time	vs=010 vs=5v					
standby	Switched from	+		< 10		116
\rightarrow active operation	PU = '0' to $PU = '1'$	t _{ssa}		< 10		μs
Settling time						
active operation	Switched from	t		< 2		110
\rightarrow standby	PU = '1' to standby	t _{sas}		~ 2		μs
Power supply	$\frac{10 - 1}{10} = 1 + 10 = 10 = 10 = 10 = 10 = 10 = 10 $	3 and 12				
Total supply current	RX			85		mA
Total supply current		I _S				mA
	RSSI only	Is		82		mA
	TX	Is		54		mA
	TX (MCC, GF active)	Is		58		mA
Standby current, mode 1	$PU_RX/TX = GND$	Is		1	10	μΑ
mode 2	PU = GND,	Is		50	100	μΑ
	$DATA_HOLD = V_S$					
Supply current CP	$V_{VS_CP} = 3 V$, PLL in	I _{CP}		1		μA
	lock condition Pin 13					

Rev. A1, 04-Jul-00

Typical Application Circuit

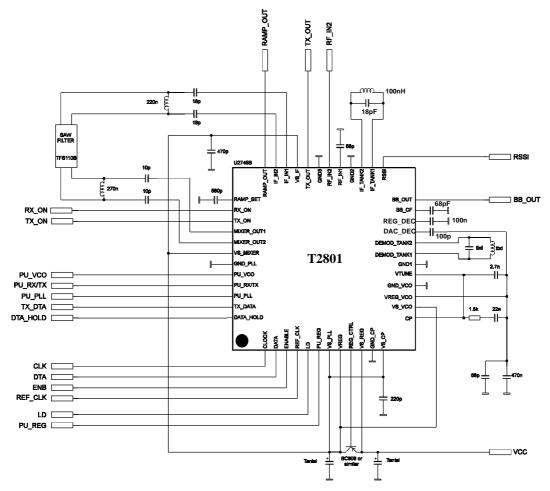
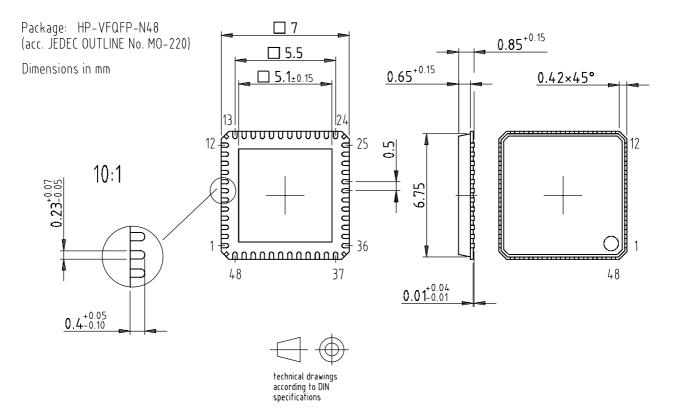



Figure 5. Typical application circuit

Package Information

Ozone Depleting Substances Policy Statement

It is the policy of **TEMIC Semiconductor GmbH** to

- 1. Meet all present and future national and international statutory requirements.
- 2. Regularly and continuously improve the performance of our products, processes, distribution and operating systems with respect to their impact on the health and safety of our employees and the public, as well as their impact on the environment.

It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as ozone depleting substances (ODSs).

The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs and forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these substances.

TEMIC Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the use of ODSs listed in the following documents.

- 1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively
- 2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental Protection Agency (EPA) in the USA
- 3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.

TEMIC Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting substances and do not contain such substances.

We reserve the right to make changes to improve technical design and may do so without further notice. Parameters can vary in different applications. All operating parameters must be validated for each customer application by the customer. Should the buyer use TEMIC Semiconductors products for any unintended or unauthorized application, the buyer shall indemnify TEMIC Semiconductors against all claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal damage, injury or death associated with such unintended or unauthorized use.

Data sheets can also be retrieved from the Internet: http://www.temic-semi.com

TEMIC Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany Telephone: 49 (0)7131 67 2594, Fax number: 49 (0)7131 67 2423